To podstawowe pytanie dotyczące modeli MA Box-Jenkins. Jak rozumiem, model MA jest zasadniczo regresją liniową wartości Y z poprzednich błędów i et. e. Oznacza to, że obserwacja Y jest najpierw regresowana względem poprzednich wartości Y. Y, a jako wartość błędu dla modelu MA użyto jednego lub więcej wartości Y-hat. Ale jak są kalkulacje błędów obliczane w modelu ARIMA (0, 0, 2) Jeśli model MA jest używany bez części autoregresji, a zatem nie ma szacowanej wartości, to w jaki sposób mogę ewentualnie ustalić termin błędu zadany 7 kwietnia 12 w 12:48 Oszacowanie modelu MA: Przyjmijmy serię z 100 punktami czasowymi i powiedzmy, że jest to model MA (1) bez przecięcia. Następnie model jest podawany przez ytvarepsilont-thetavarepsilon, quad t1,2, cdots, 100quad (1) Ten termin błędów nie jest obserwowany. Aby to osiągnąć, Box et al. Analiza serii czasowej: prognozowanie i kontrola (wydanie trzecie). strona 228. sugerują, że termin błędu jest obliczany rekurencyjnie przez, Więc termin błędu dla t1 jest, varepsilon y thetavarepsilon Teraz nie możemy obliczyć tego bez znajomości wartości theta. Aby to osiągnąć, musimy obliczyć wstępne lub wstępne oszacowanie modelu, patrz Box et al. z tej książki, w sekcji 6.3.2 strona 202 stwierdza, że: Wykazano, że pierwsze q autokorelacji procesu MA (q) są nie-zerowe i mogą być zapisywane w kategoriach parametrów modelu jako rhokdisplaystylefrac theta1theta theta2theta cdotstheta thetaq quad k1,2, cdots, q Wyrażenie powyżej forrho1, rho2cdots, rhoq w terminach theta1, theta2, cdots, thetaq, dostarcza q równań w q nieznanych. Wstępne szacunki te mogą być uzyskane przez zastąpienie estymatów rk dla rhoka w powyższym równaniu. Uwaga: rk jest szacunkową autokorelacją. W sekcji 6.3 - Szacunki wstępne parametrów są więcej dyskusji. proszę o tym przeczytać. Teraz zakładając, że otrzymamy wstępne oszacowanie theta0.5. Wtedy, varepsilon y 0.5varepsilon Teraz kolejny problem nie mamy wartości dla varepsilon0, ponieważ t zaczyna się od 1, a więc nie możemy obliczyć varepsilon1. Na szczęście istnieją dwie metody, które otrzymują dwa, Warunkowe prawdopodobieństwo bezwarunkowego prawdopodobieństwa Według Box et al. Sekcja 7.1.3 strona 227. wartości varepsilonu0 można zastąpić zerem jako przybliżenie, jeśli n jest umiarkowane lub duże, ta metoda jest Warunkowym prawdopodobieństwem. W przeciwnym razie stosuje się bezwarunkowe prawdopodobieństwo, w którym wartość varepsilon0 uzyskiwana jest za pomocą prognozy wstecznej, Box et al. polecam tę metodę. Więcej informacji na temat prognozowania wstecznego w sekcji 7.1.4 na stronie 231. Po uzyskaniu wstępnych szacunków i wartości varepsilonu0, w końcu możemy kontynuować rekurencyjne obliczanie błędu. Ostatnim etapem jest oszacowanie parametru modelu (1), pamiętaj, że nie jest to wstępne oszacowanie. Przy szacowaniu parametru theta używam procedury obliczania nieliniowego, w szczególności algorytmu Levenberg-Marquardt, ponieważ modele MA są nieliniowe pod względem jego parametru. Wskaźnik liniowej regresji Wskaźnik liniowej regresji jest używany do identyfikacji trendów i trendów w podobny sposób do średnich kroczących . Wskaźnik nie powinien być mylony z Linear Regression Lines, które są prostymi liniami umieszczonymi w szeregu punktów danych. Wskaźnik liniowej regresji rzutuje punkty końcowe całej serii linii regresji liniowej w kolejnych dniach. Zaletą wskaźnika regresji liniowej w stosunku do normalnej średniej ruchomej jest to, że ma mniej niższą od średniej ruchomej, reagując szybciej na zmiany kierunku. Minusem jest to, że jest bardziej podatne na whipsaws. Wskaźnik regresji liniowej jest odpowiedni tylko do handlu silnymi trendami. Sygnały są pobierane w podobny sposób do średnich kroczących. Za pomocą wskaźnika regresji regresji liniowej można używać filtru jako wskaźnika długoterminowego. Idź długo, jeśli wskaźnik wznowienia regresji liniowej pojawi się lub wyjdzie z krótkiego handlu. Idź krótko (lub wyjdź z długiego handlu), jeśli wskaźnik odchylenia liniowego odejdzie. Wariacja na powyższym polega na wpisaniu transakcji, gdy cena przecina wskaźnik regresji liniowej, ale nadal kończy się, gdy wskaźnik wskaźnika regresji liniowej zgaśnie. Podpowiedzi myszy nad wykresem, aby wyświetlić sygnały handlowe. Idź długo L, gdy cena przekracza 100-dniowy wskaźnik regresji liniowej, podczas gdy 300-dniowy wzrost wzrasta Zejście X, gdy 100-dniowy wskaźnik regresji liniowej zanika. Idź jeszcze długo w L, gdy cena przekracza 100-dniowy wskaźnik regresji liniowej. X, gdy 100-dniowy wskaźnik regresji liniowej jest wyłączony Idź dłużej L, gdy cena przekracza 100-dniową regresję liniową Zejście X, gdy wskaźnik 100-dniowego spadnie Daj długo L, gdy 300-dniowy wskaźnik regresji liniowej pojawi się po przekroczeniu ceny powyżej 100-dniowy wskaźnik opuszczenia X, gdy wskaźnik 300-dniowego wskaźnika regresji liniowej zgaśnie. Niewłaściwe rozbieżności na wskaźniku ostrzegają przed poważnym odwróceniem tendencji. Mając średnie i wykładnicze modele wygładzania Jako pierwszy krok w wychodzeniu poza średnie modele, przypadkowe modele chodu i modele trendów liniowych, nieuzasadnione wzorce i trendy mogą być ekstrapolowane przy użyciu średniej ruchomej lub model wygładzania. Podstawowym założeniem za modelami uśredniania i wygładzania jest to, że szereg czasowy jest lokalnie stacjonarny, a powoli zmienia się średnio. W związku z tym bierzemy ruchomą (lokalną) średnią w celu oszacowania bieżącej wartości średniej, a następnie użyć jej jako prognozy na najbliższą przyszłość. Można to uznać za kompromis między średnim modelem a modelem losowego chodzenia bez dryfu. Ta sama strategia może być wykorzystana do oszacowania i ekstrapolacji lokalnego trendu. Średnia ruchoma jest często określana jako quotsmoothedquot wersja pierwotnej serii, ponieważ uśrednianie krótkotrwałe ma efekt wygładzania uderzeń w oryginalnej serii. Dostosowując stopień wygładzania (szerokość średniej ruchomej), możemy mieć nadzieję na osiągnięcie jakiegoś optymalnego balansu między osiągnięciem modelu średniej i losowej. Najprostszym modelem uśredniania jest. Prosta (równoważona wagą) Średnia ruchoma: Prognoza dla wartości Y w czasie t1, która jest wykonana w czasie t równa się zwykłej średniej z ostatnich obserwacji m: (Tutaj i gdzie indziej będę używać symbolu 8220Y-hat8221 dla prognozowania serii czasowej Y dokonanej najwcześniej w poprzednim terminie przez dany model). Ta średnia jest wyśrodkowana w okresie t - (m1) 2, co oznacza, że oszacowanie lokalnej średniej będzie miało tendencję do opóźnienia w stosunku do prawdziwych wartość lokalnej średniej o około (m1) 2 okresów. Tak więc mówimy, że średni wiek danych w prostej średniej ruchomej wynosi (m1) 2 w stosunku do okresu, na który obliczana jest prognoza: jest to ilość czasu, w jakim prognozy będą się spóźniały za punktami zwrotnymi w danych . Na przykład, jeśli uśrednimy ostatnie 5 wartości, prognozy będą wynosić około 3 okresy późne w odpowiedzi na punkty zwrotne. Zauważ, że jeśli m1, model prostego ruchu średniego (SMA) odpowiada modelowi losowego chodzenia (bez wzrostu). Jeśli m jest bardzo duża (porównywalna z długością okresu szacowania), model SMA jest równoważny średniemu modelowi. Podobnie jak w przypadku dowolnego parametru modelu prognozowania, zwykle dostosowywana jest wartość k w celu uzyskania najlepszej jakości danych, tzn. Najmniejszych średnich błędów prognozy. Oto przykład serii, która wydaje się wykazywać przypadkowe wahania wokół średniej wolno zmieniającej się. Po pierwsze, spróbuj dopasować go do modelu przypadkowego spaceru, co odpowiada prostej średniej ruchomej z jednej kadencji: model losowego spaceru reaguje bardzo szybko na zmiany w serii, ale w ten sposób robi to znacznie pobudzając kwintesencję dane (losowe fluktuacje), jak również kwotsignalquot (lokalna średnia). Jeśli weźmiemy pod uwagę prostą średnią ruchomą wynoszącą 5 terminów, otrzymamy gładszy zestaw prognoz: 5-letnia prosta średnia ruchoma daje w tym przypadku znacznie mniejsze błędy niż model losowego chodu. Przeciętny wiek danych w tej prognozie wynosi 3 ((51) 2), co oznacza, że ma tendencję do pozostawania za punktami zwrotnymi przez około trzy okresy. (Na przykład spadek koniunktury wydaje się występować w okresie 21, ale prognozy nie odwracają się do kilku okresów później). Zauważ, że długoterminowe prognozy modelu SMA to poziome linie proste, podobnie jak w przypadku losowego spaceru Model. Tak więc, model SMA zakłada, że nie ma tendencji w danych. Jednakże, mając na uwadze, że prognozy z modelu losowego spaceru są po prostu równoważne ostatniej obserwowanej wartości, prognozy z modelu SMA są równe średniej ważonej ostatnich wartości. Ograniczenia ufności obliczone przez Statgraphics w odniesieniu do długoterminowych prognoz dotyczących prostej średniej ruchomej nie są szersze, gdy horyzont prognoz wzrasta. To oczywiście nie jest poprawne Niestety, nie ma podstawowej teorii statystycznej, która mówi nam, w jaki sposób przedziały ufności powinny poszerzać się w tym modelu. Nie jest jednak zbyt trudno obliczyć empirycznych szacunków dopuszczalnych granic dla prognoz długoterminowych. Na przykład można utworzyć arkusz kalkulacyjny, w którym model SMA byłby wykorzystywany do prognozowania 2 kroków naprzód, 3 kroków naprzód itp. W ramach historycznej próbki danych. Następnie można obliczyć próbkowe odchylenia standardowe błędów w każdym horyzoncie prognozy, a następnie skonstruować interwały zaufania dla prognoz długoterminowych przez dodawanie i odejmowanie wielokrotności odpowiedniego odchylenia standardowego. Jeśli będziemy próbować 9-letniej prostej średniej ruchomej, otrzymamy jeszcze gładsze prognozy i bardziej opóźniamy: średni wiek wynosi obecnie 5 okresów ((91) 2). Jeśli weźmiemy 19-letnią średnią ruchliwą, średni wiek wzrośnie do 10: Zauważ, że prognozy są już za punktami zwrotnymi o około 10 okresów. Która suma wygładzania jest najlepsza dla tej serii Poniżej znajduje się tabela porównująca ich statystykę błędów, w tym również średnia 3-letnia: Model C, 5-letnia średnia ruchoma, daje najniższą wartość RMSE przez mały margines w ciągu 3 średnie i średnie 9-dniowe oraz inne statystyki są niemal identyczne. Wśród modeli o bardzo podobnych statystykach błędów możemy wybrać, czy wolelibyśmy nieco lepiej reagować lub trochę bardziej sprawnie. (Powtórz początek strony). Browns Simple Exponential Smoothing (średnia wykładana ważona średnią ruchoma) Opisany wyżej prosty model średniej średniej ma niepożądaną właściwość, która traktuje ostatnie obserwacje równomiernie i całkowicie ignoruje wszystkie poprzednie obserwacje. Intuicyjnie dane z przeszłości powinny być dyskontowane w sposób bardziej stopniowy - na przykład ostatnie obserwacje powinny mieć nieco więcej niż druga ostatnia, a druga ostatnia powinna być nieco większa niż ostatnia z trzech, a wkrótce. Dokonuje tego prostokątny wygładzający (SES). Niech 945 oznacza stałą kwotową konsystencji (liczba między 0 a 1). Jednym ze sposobów zapisania modelu jest zdefiniowanie serii L, która reprezentuje aktualny poziom (tzn. Średnia wartość lokalna) szeregu szacowana na podstawie danych do dnia dzisiejszego. Wartość L w czasie t obliczana jest rekurencyjnie z własnej poprzedniej wartości: W ten sposób bieżąca wygładzona wartość jest interpolacją pomiędzy poprzednią wygładzoną wartością a bieżącą obserwacją, gdzie 945 kontroluje bliskość interpolowanej wartości do najnowszej obserwacja. Prognoza na następny okres jest po prostu aktualną wygładzoną wartością: równoważnie możemy wyrazić następną prognozę bezpośrednio w odniesieniu do poprzednich prognoz i wcześniejszych obserwacji w dowolnej z następujących równoważnych wersji. W pierwszej wersji prognoza jest interpolacją między poprzednią prognozą a poprzednią obserwacją: w drugiej wersji następna prognoza uzyskuje się przez dostosowanie poprzedniej prognozy w kierunku poprzedniego błędu w ułamkowej wartości 945. jest błędem dokonanym w czas t. W trzecim projekcie prognoza jest średnią ruchoma ważoną wykładnicą (tzn. Zdyskontowaną) z współczynnikiem dyskontowania 1 - 945: wersja interpolacyjna formuły prognozowania jest najprostszym sposobem użycia, jeśli model implementuje model w arkuszu kalkulacyjnym: jest on dopasowany do pojedynczą komórkę i zawiera odwołania do komórek wskazujące na poprzednią prognozę, wcześniejsze obserwacje oraz komórkę, w której przechowywana jest wartość 945. Zauważ, że jeśli 945 1, model SES jest równoważny modelowi losowego spaceru (bez wzrostu). Jeśli 945 0, model SES jest odpowiednikiem średniego modelu, zakładając, że pierwsza wygładzona wartość jest równa średniej. (Powrót na górę strony.) Przeciętny wiek danych w prognozie wygładzania według wykładników prostych i wykładniczych wynosi 1 945 w stosunku do okresu, w którym obliczana jest prognoza. (Nie powinno to być oczywiste, ale można to łatwo wykazać przez ocenę nieskończonej serii). W związku z tym, prosta średnia ruchoma przebiega za punktami zwrotnymi przez około 1 945 okresów. Na przykład, gdy 945 0,5 opóźnienie to 2 okresy, gdy 945 0,2 opóźnienie wynosi 5 okresów, gdy 945 0,1 opóźnienia wynosi 10 okresów itd. Dla pewnego przeciętnego wieku (czyli ilości opóźnień), prosta prognoza wygładzania wykładniczego (SES) jest nieco lepsza od prognozy SMA (Simple moving average), ponieważ w ostatnim obserwowaniu obserwuje się relatywnie większą wagę. jest nieco bardziej odpowiadający na zmiany zachodzące w niedawnej przeszłości. Na przykład model SMA z 9 terminami i model SES z 945 0.2 mają średni wiek 5 lat dla danych w ich prognozach, ale model SES daje większą wagę w stosunku do ostatnich 3 wartości niż model SMA i na poziomie w tym samym czasie nie robi nic 8220forget8221 o wartościach powyżej 9 okresów, jak pokazano na poniższym wykresie: Inną ważną zaletą modelu SES w modelu SMA jest to, że model SES wykorzystuje parametr wygładzania, który jest ciągle zmienny, dzięki czemu można z łatwością zoptymalizować za pomocą algorytmu quotsolverquot w celu zminimalizowania średniego kwadratu. Optymalna wartość 945 w modelu SES dla tej serii okazała się wynosić 0.2961, jak pokazano poniżej: średni wiek danych w tej prognozie to 10.2961 3.4 okresy, które są podobne do średniej 6-letniej prostej średniej ruchomej. Długoterminowe prognozy z modelu SES są poziomej prostej. jak w modelu SMA i modelu przypadkowego spacerowania bez wzrostu. Należy jednak pamiętać, że przedziały ufności obliczane przez Statgraphics różnią się w rozsądny sposób i że są one znacznie węższe niż przedziały ufności dla modelu losowego spaceru. Model SES zakłada, że seria jest nieco bardziej przewidywalna niż model losowego chodu. Model SES jest faktycznie szczególnym przypadkiem modelu ARIMA. tak więc statystyczna teoria modeli ARIMA stanowi solidną podstawę do obliczania przedziałów ufności dla modelu SES. W szczególności model SES jest modelem ARIMA z odmienną różnicą, terminem MA (1), a nie określonym terminem. inaczej znany jako model quotARIMA (0,1,1) bez stałej ilości. Współczynnik MA (1) w modelu ARIMA odpowiada ilościowi 1- 945 w modelu SES. Na przykład, jeśli dopasujesz model ARIMA (0,1,1) bez stałej do analizowanej serii, szacowany współczynnik MA (1) okazuje się wynosić 0.7029, czyli prawie dokładnie minus minus 0.2961. Możliwe jest dodanie założenia niezerowej stałej tendencji liniowej do modelu SES. W tym celu wystarczy podać model ARIMA z jedną różniczkową różnicą i terminem MA (1) ze stałą, tj. Model ARIMA (0,1,1) ze stałą. Prognozy długoterminowe będą wtedy miały tendencję, która jest równa średniej tendencji obserwowanej w całym okresie szacunkowym. Nie można tego zrobić w połączeniu z dostosowaniem sezonowym, ponieważ opcje dostosowania sezonowego są wyłączone, gdy typ modelu jest ustawiony na ARIMA. Można jednak dodać stałą długoterminową tendencję wykładniczą do prostego modelu wygładzania wykładniczego (z korektą sezonową lub bez), korzystając z opcji regulacji inflacji w procedurze prognozowania. Odpowiednia szybkość wzrostu kwotowania (stopa wzrostu procentowego) w danym okresie może być oszacowana jako współczynnik nachylenia w modelu liniowego tendencji dopasowany do danych w połączeniu z naturalną transformacją logarytmiczną lub może opierać się na innych, niezależnych informacjach dotyczących długoterminowych perspektyw wzrostu . (Powrót na początek strony). Browns Linear (tj. Podwójne) Wyrównywanie wykładnicze Modele SMA i modele SES zakładają, że w danych nie ma żadnego trendu (co zwykle jest OK lub przynajmniej nie jest zbyt złe dla 1- prognozy stopniowe, gdy dane są stosunkowo hałaśliwe) i można je zmodyfikować, aby uwzględnić stały trend liniowy, jak pokazano powyżej. Co z trendami krótkoterminowymi Jeśli seria wykazuje zróżnicowaną stopę wzrostu lub cykliczny wzór wyraźnie wyróżniający się w stosunku do hałasu, a jeśli istnieje potrzeba prognozowania więcej niż jednego okresu, szacunek lokalnej tendencji może być również problem. Prosty model wygładzania wykładniczego można uogólnić w celu uzyskania liniowego modelu wygładzania wykładniczego (LES), który oblicza lokalne szacunki zarówno poziomu, jak i tendencji. Najprostszym modelem trendów jest Browns liniowy model wygładzania wykładniczego, który wykorzystuje dwie różne wygładzone serie, które są wyśrodkowane w różnych punktach w czasie. Formuła prognozy opiera się na ekstrapolacji linii przez dwa centra. (Poniżej omówiono bardziej wyrafinowaną wersję tego modelu, Holt8217). Algorytm liniowy linearyzacji Brown8217s, podobny do prostokątnego modelu wygładzania, może być wyrażony w wielu różnych, ale równoważnych formach. Niewątpliwą formą tego modelu jest zwykle wyrażona w następujący sposób: Niech S oznacza pojedynczo wygładzoną serię otrzymaną przez zastosowanie prostego wygładzania wykładniczego do serii Y. Oznacza to, że wartość S w okresie t jest wyrażona przez: (Przypomnijmy, że według prostego wyrównywanie wykładnicze, to byłaby prognoza dla Y w okresie t1). Pozwólmy Squot oznaczać podwójnie wygładzoną serię otrzymaną przez zastosowanie prostego wygładzania wykładniczego (przy użyciu tego samego 945) do serii S: Wreszcie prognoza dla Y tk. dla każdego kgt1, podaje: Otrzymuje e 1 0 (to znaczy trochę oszukiwać, a pierwsza prognoza jest równa faktycznej pierwszej obserwacji) i e 2 Y 2 8211 Y 1. po których generowane są prognozy przy użyciu powyższego wzoru. Daje to takie same wartości, jak wzór na podstawie S i S, jeśli te ostatnie zostały uruchomione przy użyciu S 1 S 1 Y 1. Ta wersja modelu jest używana na następnej stronie, która ilustruje kombinację wygładzania wykładniczego z dostosowaniem sezonowym. Model LES firmy Holt8217s oblicza lokalny szacunek poziomu i trendu, wygładając ostatnie dane, ale fakt, że wykonuje to za pomocą pojedynczego parametru wygładzania, ogranicza wzorce danych, które można dopasować: poziom i trend nie mogą zmieniać się w niezależnych stawkach. Model LES firmy Holt8217s rozwiązuje ten problem przez uwzględnienie dwóch stałych wygładzania, po jednym dla poziomu i jednego dla tego trendu. W dowolnym momencie t, podobnie jak w modelu Brown8217s, szacuje się, że na poziomie lokalnym jest szacunkowa t t lokalnego trendu. Tutaj są obliczane rekurencyjnie z wartości Y obserwowanej w czasie t oraz poprzednich szacunków poziomu i tendencji przez dwa równania, które nakładają na siebie wyrównywanie wykładnicze. Jeśli szacowany poziom i tendencja w czasie t-1 to L t82091 i T t-1. odpowiednio, wówczas prognoza dla Y tshy, która została dokonana w czasie t-1, jest równa L t-1 T t-1. Gdy rzeczywista wartość jest zaobserwowana, zaktualizowany szacunek poziomu jest obliczany rekurencyjnie przez interpolowanie pomiędzy Y tshy a jego prognozą, L t-1 T t-1, przy użyciu odważników 945 i 1 945. Zmiana szacowanego poziomu, mianowicie L t 8209 L t82091. można interpretować jako hałasujący pomiar tendencji w czasie t. Zaktualizowane oszacowanie trendu jest następnie obliczane rekurencyjnie przez interpolowanie pomiędzy L t 8209 L t82091 a poprzednim oszacowaniem tendencji T t-1. przy użyciu odważników 946 i 1-946: Interpretacja stałej 946 wyrównania tendencji jest analogiczna do stałej stymulacji 945. Modele o małych wartościach 946 zakładają, że tendencja zmienia się bardzo powoli w czasie, podczas gdy modele z większy rozmiar 946 zakłada, że zmienia się szybciej. Model z dużą liczbą 946 uważa, że dalsza przyszłość jest bardzo niepewna, ponieważ błędy w oszacowaniu tendencji stają się bardzo ważne, gdy prognozuje się więcej niż jeden rok. (Powrót na początek strony). Stałe wygładzania 945 i 946 można oszacować w zwykły sposób minimalizując średnie kwadratowe błędy prognoz na jeden etap. Gdy to nastąpi w Statgraphics, szacunki wyniosły 945 0,3048 i 946 0,008. Bardzo mała wartość 946 oznacza, że model zakłada bardzo niewielką zmianę tendencji z jednego okresu do następnego, więc w zasadzie ten model próbuje oszacować długoterminowy trend. Przez analogię do pojęcia średniego wieku danych używanych do oszacowania lokalnego poziomu szeregu, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej jest proporcjonalny do 1 946, chociaż nie jest dokładnie taki sam . W tym przypadku okazuje się, że jest to 10.006 125. Jest to bardzo dokładna liczba, ponieważ dokładność szacowania 946 isn8217t rzeczywiście wynosi 3 miejsca po przecinku, ale ma ten sam ogólny porządek wielkości, co wielkość próbki 100, więc ten model uśrednia wiele historii w szacowaniu tendencji. Poniższa wykres prognozuje, że model LES szacuje nieco większą tendencję lokalną na końcu serii niż stała tendencja szacowana w modelu SEStrend. Ponadto szacowana wartość 945 jest niemal identyczna z uzyskaną przez dopasowanie modelu SES do trendu lub bez, więc jest to prawie ten sam model. Teraz wyglądają jak rozsądne prognozy modelu, które ma oszacować trend lokalny Jeśli wygląda to na wykresie, wygląda na to, że lokalny trend spadł na koniec serii Co się stało Parametry tego modelu zostały oszacowane przez zminimalizowanie kwadratu błędów prognoz na jeden etap, a nie prognoz długoterminowych, w których to przypadku tendencja ta ma wiele różnic. Jeśli wszystko, na co patrzysz, to błędy z jednopodstawowym wyprzedzeniem, nie widzisz większego obrazu trendów w ciągu 10 lub 20 okresów (powiedzmy). Aby uzyskać ten model bardziej zgodny z naszą ekstrapolacją danych oczu, możemy ręcznie dostosować stałą wygładzania trendu, tak aby używała krótszej linii odniesienia dla szacowania tendencji. Na przykład, jeśli zdecydujemy się ustawić 946 0.1, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej to 10 okresów, co oznacza, że uśrednimy tendencję w ciągu ostatnich 20 okresów. Here8217s jak wygląda prognoza wykresu, jeśli ustawimy 946 0.1 przy zachowaniu 945 0.3. To wydaje się intuicyjnie rozsądne w tej serii, chociaż najprawdopodobniej jest to niebezpieczne, aby wyliczyć tę tendencję w przyszłości o więcej niż 10 okresów. Co ze statystykami o błędach Oto porównanie modelu dwóch modeli przedstawionych powyżej oraz trzech modeli SES. Optymalna wartość 945 dla modelu SES wynosi około 0,3, ale uzyskuje się podobne wyniki (z nieco większą lub mniejszą reakcją) przy 0,5 i 0,2. (A) Holts liniowy exp. wygładzanie z alfa 0,3048 i beta 0,008 (B) liniowe liniowe exp. wygładzanie za pomocą alfa 0.3 i beta 0.1 (C) proste wyrównywanie wykładnicze z alfa 0.5 (D) proste wyrównywanie wykładnicze z alfa 0.3 (E) proste wyrównywanie wykładnicze z alfa 0.2 ich statystyka jest prawie identyczna, więc naprawdę możemy8217t dokonać wyboru na podstawie Błędy prognozy dotyczące etapu wyprzedzania w ramach próbki danych. Musimy pogodzić się z innymi względami. Jeśli uważamy, że sensowne jest oparcie bieżącej tendencji szacunkowej na to, co wydarzyło się w ciągu ostatnich 20 okresów, możemy zrobić przypadek modelu LES z 945 0,3 i 946 0,1. Jeśli chcemy być agnostyczni, czy istnieje tendencja lokalna, jeden z modeli SES może być łatwiejszy do wyjaśnienia, a także dałby więcej prognoz średniej wielkości na najbliższe 5 lub 10 okresów. (Powrót na początek strony.) Który typ tendencji - ekstrapolacja jest najlepsza: pozioma lub liniowa Dane empiryczne sugerują, że jeśli dane zostały już skorygowane (jeśli to konieczne) dla inflacji, może okazać się nieprzejrzyste ekstrapolacja krótkoterminowych liniowych trendy bardzo daleko w przyszłość. Trendy widoczne dziś mogą się spowolnić w przyszłości ze względu na różne przyczyny, takie jak nieaktualność produktu, zwiększona konkurencja i cykliczne spowolnienie gospodarcze lub wzrost w przemyśle. Z tego powodu prosty wygładzanie wykładnicze często wykonuje lepszą próbę poza próbą niż oczekiwano inaczej, pomimo ekstrapolacji tendencji poziomej. Często w praktyce często stosuje się modyfikacje trendu tłumiącego liniowego modelu wygładzania wykładniczego, aby w praktyce wprowadzić do konserwacji swój zapis konserwatyzmu. Model "LES" z tendencjami tłumionymi może być realizowany jako szczególny przypadek modelu ARIMA, w szczególności modelu ARIMA (1,1,2). Możliwe jest obliczanie przedziałów ufności wokół prognoz długoterminowych wytworzonych przez wykładnicze modele wygładzania, biorąc pod uwagę je jako szczególne przypadki modeli ARIMA. (Uwaga: nie wszystkie programy obliczają prawidłowe przedziały ufności dla tych modeli.) Szerokość przedziałów ufności zależy od (i) błędu RMS modelu, (ii) rodzaju wygładzania (prostego lub liniowego) (iii) wartości (-ów) wygładzania (a) i (iv) liczbę prognozowanych okresów. Ogólnie rzecz biorąc, odstępy czasowe rozciągają się szybciej, gdy 945 staje się większe w modelu SES i rozciągają się znacznie szybciej, gdy stosuje się linearne, a nie proste wygładzanie. Ten temat jest omówiony w dalszej części sekcji ARIMA w uwagach. (Powrót na początek strony.) 8.4 Ruchome modele średnie Zamiast używać przeszłych wartości zmiennej prognozy w regresji, model średniej ruchomości wykorzystuje poprzednie błędy prognozy w modelu regresywnym. y c t etta etta k etta, gdzie et jest białym szumem. Odnoszę się do tego jako model typu MA (q). Oczywiście nie obserwujemy wartości et, więc nie jest to regresja w zwykłym sensie. Zauważ, że każda wartość yt może być traktowana jako ważona średnia ruchoma ostatnich kilku błędów prognozy. Nie należy jednak mylić średnich ruchomej z ruchomej wygładzonej średniej, o której mówiliśmy w rozdziale 6. W celu oszacowania cyklu trendu wcześniejszych wartości wykorzystywany jest średnioroczny model prognozowania przyszłych wartości, podczas gdy ruchome średnie wygładzenie jest używane do szacowania cyklu trendu ostatnich wartości. Rysunek 8.6: Dwa przykłady danych z ruchomych średnich modeli o różnych parametrach. Lewo: MA (1) z y t 20e t 0.8e t-1. Po prawej: MA (2) z y t e t e t-1 0,8e t-2. W obu przypadkach, e t jest normalnie rozproszonym białym hałasem ze średnią zerem i wariancją. Rysunek 8.6 przedstawia niektóre dane z modelu MA (1) i modelu MA (2). Zmiana parametrów theta1, kropki, thetaq powodują, że różne wzorce serii czasowych. Podobnie jak w modelach autoregresywnych, wariancja warunku błędów et zmienia tylko skalę szeregu, a nie wzorców. Możliwe jest pisanie dowolnego stacjonarnego modelu AR (p) jako modelu MA (infty). Na przykład, używając powtórzonej podstawy, możemy to udowodnić za model AR (1): rozpocznij yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 i et phi fiordy phi12e phi1 i koniec amptext Pod warunkiem -1 lt phi1 lt 1, wartość phi1k będzie mniejsza, gdy k powiększy się. Więc ostatecznie otrzymujemy yt et phi1 e phi12 e phi13 e cdots, proces MA (infty). Wynik odwrotny utrzymuje się, jeśli wprowadzamy pewne ograniczenia parametrów MA. Następnie model MA nazywa się odwracalnym. Oznacza to, że możemy pisać dowolny proces odwracalny MA (q) jako proces AR (infty). Modele odwracalne nie tylko umożliwiają nam konwersję z modeli MA na modele AR. Mają także pewne właściwości matematyczne, które ułatwiają ich stosowanie w praktyce. Ograniczenia inwersji są podobne do ograniczeń stacjonarnych. Dla modelu MA (1): -1lttheta1lt1. Dla modelu MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - eta2l1. Bardziej skomplikowane warunki zachowują się dla qge3. Znowu R zajmuje się tymi ograniczeniami podczas szacowania modeli.
Comments
Post a Comment